
个人简历
罗健,1988.12生于江西抚州,PA视讯平台,PA视讯,PA视讯官网教授,博士生导师,海南自由贸易港D类人才。获得由International Institute of Forecasters (IIF)颁发的SAS-IIF award on Principles of Forecasting (5000美元奖金),入选辽宁省百千万人才工程、海南省第一届“南海新星”人才项目,2017-2021兼任IIF Approved Program of Student Award,“辽宁省大数据管理与优化决策重点实验室”顾问,中国运筹学会决策科学分会第七届理事。近年来在管理科学与工程、运筹学与预测领域国际顶级与知名期刊M&SOM (UTD24)、POMs(UTD 24)、EJOR(ABS 4)、IJF(ABS 3,国际预测领域顶级期刊)、IEEE Transactions、DSS(ABS 3)、TEM(ABS 3)、JORS(ABS 3)、FODM(ABS 3)、KBS等已发表三十余篇英文SCI/SSCI期刊论文、在《中国管理科学》发表2篇中文CSSCI论文。担任多个SCI/SSCI Q1期刊审稿人;主持2项国家自科基金项目、1项教育部人文社会科学项目、1项海南省“南海新星”人才项目、2项海南省自科项目,参与3项国家自科基金项目(含1项国家自科基金重点项目专题负责人)。
联系方式
luojian546@hotmail.com或者luojian546@hainanu.edu.cn
研究领域
机器学习方法及其在运作管理、能源预测、金融风控等领域的应用,预测理论与方法,非线性优化及其应用
教育背景
2010/08—2014/12, 美国北卡罗莱纳州立大学,工业工程系,博士(导师:方述诚教授)
2009/08—2010/07, 美国佛罗里达州立大学,工业与制造工程系,博士生
2007/09—2009/07, 武汉大学,应用数学系,硕士(导师:樊启斌教授)
2003/09—2007/07, 武汉大学,信息与计算科学系,学士
工作、学术经历
2021/11-至今,PA视讯平台,国际商学院,教授
2015/3-2021/10,东北财经大学,管理科学与工程学院,副教授
2012/8-2014/6,美国北卡罗莱纳州立大学,工业与系统工程系,研究助理
2011/8-2012/5,美国北卡罗莱纳州立大学,工业与系统工程系,教学助理
2009/8-2010/7,美国佛罗里达州立大学,高性能材料研究所,研究助理
代表性中英文期刊论文(其中(*)代表通讯作者)
[1] Z. Wu, J. Luo(*), Z. Hao, and W. Qi, “Human-centric order picking: performance prediction and robot assignment at a robotic fulfilment center,” 2025. Accepted by Manufacturing & Service Operations Management. (UTD 24,FMS A)
[2] J. Luo, X. Yan, and Y. Tian, “Unsupervised quadratic surface support vector machine with application to credit risk assessment,” Eur. J. Oper. Res., vol. 280, no. 3, pp. 1008–1017, 2020. (SCI: Q1, ABS 4, FMS A)
[3] Z. Gao, S.-C. Fang, J. Luo(*), and N. Medhin, “A kernel-free double well potential support vector machine with applications,” Eur. J. Oper. Res., vol. 290, pp. 248–262, 2021. (SCI: Q1, ABS 4, FMS A)
[4] J. Tong, J. Zhang, C. Zhu, J.-Q. Hu and J. Luo, The Interplay of Organizational Structure and Strategic Inventory Under Supply Chain Competition. Production and Operations Management, 2025, https://doi.org/10.1177/10591478251345134. (UTD 24,FMS A)
[5] J. Luo, T. Hong, Z. Gao and S.-C. Fang, “A robust support vector regression model for electric load forecasting,” Int. J. Forecast., vol. 39, no. 2, pp. 1004–1020, 2023. (SSCI: Q1, ABS 3)
[6] J. Luo, T. Hong, and S.-C. Fang, “Benchmarking robustness of load forecasting models under data integrity attacks,” Int. J. Forecast., vol. 34, no. 1, pp. 89–104, 2018. (SSCI: Q1,ABS 3)
[7] J. Luo, H. Song, Z. Wu and Y. Zheng, "Optimizing Distribution Network Design Using Conic Relaxation for Maximum Cut Formulations," IEEE Transactions on Engineering Management, vol. 72, pp. 1592-1607, 2025. (SCI: Q1, ABS 3)
[8] Y. Zhang, G. Nan, J. Luo(*), and J. Zhang, A novel fuzzy nonparallel support vector machine for identifying helpful online reviews. Decision Support Systems, vol. 196, 2025. (SCI: Q1, ABS 3)
[9] J. Luo, Y. Zhang, Y. Gao, and J. Zhang, A novel method based on knowledge adoption model and non-kernel SVM for predicting the helpfulness of online reviews. Journal of the Operational Research Society, vol. 75, no. 6, pp. 1205-1222, 2024. (SSCI/SCI: Q2, ABS 3)
[10] Zheng, J., Tian, Y., J. Luo(*), and Hong, T.. A novel hybrid method based on kernel-free support vector regression for stock indices and price forecasting. J. Oper. Res. Soc., vol. 74, no.3, pp. 690-702, 2023. (SSCI/SCI: Q2, ABS 3)
[11] J. Zhou, Y. Tian, J. Luo(*), and Q. Zhai, “Laplacian large margin distribution machine for semi-supervised classification,” J. Oper. Res. Soc., vol. 73, no.8, pp. 1889-1904, 2022. (SSCI/SCI: Q2, ABS 3)
[12] J. Luo, Y. Zheng, T. Hong, A. Luo, and Q. Yang, “Fuzzy support vector regressions for short-term load forecasting,” Fuzzy Optim. Decis. Mak., vol. 23, no. 3, pp. 363–385, 2024. (SCI: Q2, ABS 3)
[13] J. Luo, T. Hong, and S.-C. Fang, “Robust regression for load forecasting,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5397–5404, 2019. (SSCI/SCI: Q1)
[14] 罗健, 唐加福, 于清雅, and 吴志樵. O2O外卖商圈划分及顾客需求分布规律发现.中国管理科学, 31(03), 58-68, 2023. (CSSCI, FMS A类)
[15] 吴志樵, 康亚玲, 罗健(*) and 唐加福. 活跃度与补贴对O2O平台需求的影响机理及优化策略.中国管理科学, 31(02), 173-181, 2023. (CSSCI, FMS A类)
[16] Y. Tian, Z. Deng(*), J. Luo(*), and Y. Li, “An intuitionistic fuzzy set based S3VM model for binary classification with mislabeled information,” Fuzzy Optim. Decis. Mak., vol. 17, no. 4, pp. 475–494, 2018. (SCI: Q2, ABS 3)
[17] X. Yan, Y. Bai, S.-C. Fang, and J. Luo(*), “A kernel-free quadratic surface support vector machine for semi-supervised learning,” J. Oper. Res. Soc., vol. 67, no. 7, 2016. (SSCI/SCI: Q2, ABS 3)
[18] J. Luo, S.-C. Fang, Z. Deng, and Y. Tian, “Robust kernel-free support vector regression based on optimal margin distribution,” Knowledge-Based Syst., vol. 253, 2022. (SCI: Q1)
[19] J. Luo, T. Hong, and M. Yue, “Real-time anomaly detection for very short-term load forecasting,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 2, pp. 235–243, 2018. (SSCI/SCI: Q1)
[20] Y. Tian, M. Sun, Z. Deng, J. Luo(*), and Y. Li, “A new fuzzy set and non-kernel SVM approach for mislabeled binary classification with applications,” IEEE Trans. Fuzzy Syst., vol. 25, no. 6, pp. 1536–1545, 2017. (SCI: Q1)
[21] Y. Tian, Z. Yong, and J. Luo(*), “A new approach for reject inference in credit scoring using kernel-free fuzzy quadratic surface support vector machines,” Appl. Soft Comput., vol. 73, pp. 96–105, 2018. (SSCI/SCI: Q1)
[22] Z. Gao, S.-C. Fang, X. Gao and J. Luo(*), and N. Medhin, “A novel kernel-free least squares twin support vector machine for fast and accurate multi-class classification,” Knowledge-Based Syst., vol. 226, p. 107123, 2021. (SCI: Q1)
主要科研课题
1. 国家自然科学基金地区项目,课题名称:不确定数据背景下电力市场需求方分层概率负荷预测方法,主持,在研。
2. 海南省第一届“南海新星”人才项目,课题名称:大数据时代下O2O平台顾客需求分析与预测,主持,在研。
3. 教育部人文社会科学一般项目,课题名称:大数据时代下基于顾客及商家划分的O2O外卖平台精准营销策略研究,主持,在研。
4. 海南省自然科学基金高层次人才项目,课题名称:在线交易平台消费者评论对消费者购买行为决策的影响及平台治理,主持,在研。
5. 海南省自然科学基金面上项目,课题名称:基于新兴信息技术的数据要素定价模型及交易,主持,在研。
6. 国家自然科学基金青年项目,课题名称:数据攻击下基于L1范数与无核支持向量的电力负荷鲁棒预测方法研究,主持,已结题。
7. 国家自然科学基金重点项目,课题名称:O2O模式下即时配送服务运作管理的理论与方法,参与(第一专题负责人)。